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Identification of plastic‑associated 
species in the Mediterranean 
Sea using DNA metabarcoding 
with Nanopore MinION
Keren Davidov1,3, Evgenia Iankelevich‑Kounio1,3, Iryna Yakovenko1, Yuri Koucherov1, 
Maxim Rubin‑Blum2 & Matan Oren1*

Plastic debris in the ocean form a new ecosystem, termed ‘plastisphere’, which hosts a variety of 
marine organisms. Recent studies implemented DNA metabarcoding to characterize the taxonomic 
composition of the plastisphere in different areas of the world. In this study, we used a modified 
metabarcoding approach which was based on longer barcode sequences for the characterization of 
the plastisphere biota. We compared the microbiome of polyethylene food bags after 1 month at sea 
to the free-living biome in two proximal but environmentally different locations on the Mediterranean 
coast of Israel. We targeted the full 1.5 kb-long 16S rRNA gene for bacteria and 0.4–0.8 kb-long 
regions within the 18S rRNA, ITS, tufA and COI loci for eukaryotes. The taxonomic barcodes were 
sequenced using Oxford Nanopore Technology with multiplexing on a single MinION flow cell. We 
identified between 1249 and 2141 species in each of the plastic samples, of which 61 species (34 
bacteria and 27 eukaryotes) were categorized as plastic-specific, including species that belong to 
known hydrocarbon-degrading genera. In addition to a large prokaryotes repertoire, our results, 
supported by scanning electron microscopy, depict a surprisingly high biodiversity of eukaryotes 
within the plastisphere with a dominant presence of diatoms as well as other protists, algae and fungi.

Plastic pollution has become an integral part of our environment. Circulating since the 1950s, plastic traces are 
now present almost everywhere on earth1. In recent years, an order of magnitude estimate of 10 million tons per 
year of plastic litter finds its way to the oceans2,3. Marine plastic debris is generally highly persistent and remain 
in the environment for a long time4, serving as stable substrates for the colonization and growth of a variety of 
marine organisms and microorganism communities5. The plastic ecosystem is distinct in its biota composition 
from that of its surrounding water6,7 and consequently was termed “plastisphere”6.

The development boost in next-generation sequencing (NGS) platforms in recent years, significantly reduced 
the time and costs of sequencing, transforming the environmental metabarcoding and biodiversity research8. 
Following pioneer studies, such as those of De-Tender et al.9 and Zettler et al.6, researchers have begun using 
NGS-based metabarcoding as the major tool to depict the plastisphere taxa composition on marine microplastic 
collected from the ocean and on plastic polymers that were experimentally exposed to the marine environment. 
In most of these studies, short regions of the small ribosomal subunit ribonucleic acid 16S gene (16S rRNA) 
and/or of the equivalent eukaryote 18S rRNA gene have been used for metabarcoding with second-generation 
sequencing technologies, predominantly MiSeq Illumina sequencing as well as 454 pyrosequencing (Roche)10.

Whereas this approach has yielded important data about the plastisphere composition, it is yet limited in its 
resolution and taxonomic coverage. Indeed, second-generation sequencing technologies have little error rates 
and excellent coverage, which is advantageous for environmental metabarcoding. However, these technologies 
produce short reads, forcing researchers to choose short barcoding regions, typically within 200–500 bp length 
range11. The short barcode sequence length limits the barcoding resolution, which often fails to discriminate 
among taxa due to the ambiguity in the read taxonomic classification10. Hence, using long-read sequencing 
technologies, such as third-generation Pacific Biosystems SMRT and Oxford Nanopore sequencing, to sequence 
longer regions of the same barcode loci is expected to result in better classification of taxa10,12,13. Moreover, 
current plastisphere metabarcoding studies are usually based on one or two barcode loci, an approach which 
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limits taxonomic identification capacity. This is especially true for eukaryotic microorganisms that are extremely 
heterogeneous14. Different variable regions of the 18S rRNA including V4, V7 and V9 regions were used for the 
metabarcoding of eukaryotic microorganisms in the plastisphere11. Yet, some relevant key taxonomic groups 
are underrepresented or even missing from the resulting 18S metabarcoding datasets15,16. Relying on additional 
barcode loci may aid in filling this gap15. For example, primers for the tufA gene, which encodes the elonga-
tion factor EF-Tu, were found to perform better in the identification of certain marine microalgae species17, 
the nuclear ribosomal internal transcribed spacer (ITS) was found to be more suitable for the identification of 
fungi18 and the cytochrome c oxidase I (COI) is more suitable for covering metazoans19. For prokaryotes, the 
most frequently used genetic barcodes in environmental metabarcoding studies lies within the hypervariable 16S 
rRNA V3–V5 locus for bacteria11 and within V1–V2 locus for archaea20. However, as is the case for eukaryotes, 
their short sequence length (0.3–0.5 kb) may limit their taxonomic resolution10.

In this study, we performed metabarcoding of species based on DNA that was extracted from seawater and 
from polyethylene (PE) plastic bags that were submerged for 1 month in two proximal but environmentally dif-
ferent marina and open-water locations at the Mediterranean coast of Israel. We used the Nanopore MinION 
sequencing platform to sequence the full 16S rRNA gene for bacteria (V1–V9 region, ~ 1.5 kbp long) and a combi-
nation of four established eukaryotic barcodes within the 18S rRNA (~ 0.7 kbp), ITS (~ 0.4 kbp), tufA (~ 0.8 kbp) 
and COI (~ 0.7 kbp) genetic loci. We first tested the barcoding efficiency in the identification of known species 
using MinION sequencing for each of the five loci. We later used the same barcodes to profile the taxonomic 
diversity in pooled plastisphere and water samples from each location using a single Nanopore MinION flow 
cell with multiplexing. Our metabarcoding results, together with the morphological identification of taxa by 
scanning electron microscopy (SEM), demonstrate the efficiency of this approach in the characterization of life 
in the plastisphere as well in the identification of plastic-associated species.

Methods
Experiment setup.  For the characterization of the plastisphere taxa composition on low-density polyeth-
ylene (LDPE) we used plastic food bags (18 × 20 cm) that were positioned in Herzliya marina (32° 09′ 38.8" N 
34° 47′ 35.0" E) and in the open water of the nearby Herzliya public beach (32° 10′ 05.4" N 34° 47′ 52.5" E, 
~ 300 m of the shore) (Fig. 1). The bags were secured to a stable structure (i.e. buoy/metal post/dock cleats) with 
a fishing line sewed into a firm polycarbonate strip that was inserted in one edge of each of the bags allowing 
limited movement but preventing tearing and detachment. The bags were positioned 20–30 cm below the sur-

Figure 1.   Experiment location. (a) Top view. Inset shows location in Israel (b) open water location—side view. 
(c) Marina location—side view. OW open water location, m marina location.
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face and ~ 6 m above the sea bed. Bags were submerged for 1 month (December 20, 2018, to January 20, 2019) 
until sampling.

Plastic and water sampling.  Water and polyethylene (PE) food bag samples were taken from the marina 
and open water locations. Six pieces of the polyethylene were taken for DNA extraction and SEM imaging from 
the PE food bags in each location. The pieces (~ 1 × 2 cm) were cut using sterile scissors, gently washed 3 times 
for 5 min with filtered seawater (FSW) to remove unbound material and separately processed in each of the sub-
sequent assays and procedures described below. Seawater was sampled 3 times in proximity to the PE bags using 
a sterile plastic sampling bottle. 0.5 L of the sampled water was filtered on 0.22 µm polyethersulfone membrane 
(Millipore) using a 20 L/min pump (MRC).

SEM microscopy.  The visualization of the microorganisms on the PE was performed by scanning electron 
microscopy (SEM). PE samples were fixed for 2–5 h in 1% glutaraldehyde and 4% PFA and post-fixed with 
osmium tetroxides (OsO4) for one hour at room temperature followed by washes (three times for 5 min) in dis-
tilled water. Samples were kept in 50% ethanol in phosphate-buffered saline (PBS) at − 20 °C until use. One day 
before use, samples were dehydrated in graded ethanol series for 10 min each in 50%, 70%, 85%, 95% ethanol, 
followed by 3 × 15 min in 100% ethanol. Dehydrated samples were air-dried for at least 5 h in a hood, sputter-
coated with 10 nm of platinum/gold (Quorum Q150T ES) and then visualized and imaged on an Ultra-High 
Resolution Maia 3 FE-SEM (Tescan) in a range of 3–7 kV voltage.

DNA extraction.  DNA was extracted using the phenol–chloroform extraction method. The samples (filters 
and PE) were collected into 15 mL Eppendorf tubes containing 2 mL of lysis buffer (10 mM Tris–HCL pH8, 
25 mM Na2EDTA pH8, 1v/v% SDS and 100 mM NaCl) and stored in − 20 °C until processing. Samples were 
later thawed, subjected to bead beating with  ~ 0.4 gr of 425–600 µm sterile glass beads (Sigma) and proteinase 
K (5 units/µL) and Lysozyme (2000 units/µL) digestion. All other steps of the DNA extraction were performed 
according to21. DNA was finally eluted in 40 µL EB (10 mM TE Tris 1 mM EDTA pH8).

PCR amplification and cleanup.  Each sample was subjected to PCR amplification with five sets of com-
monly used primers to amplify five barcode regions from the 16S22, COI23, 18S24, tufA25 and ITS26 loci. The 
choice of barcoding primer-sets and loci (Table 1) was so that they collectively cover a wide range of marine 
plastic-relevant taxa. The reaction volume was 50 µL with 25–75 ng of template sample DNA. The amplifica-
tion of barcodes was performed according to the parameters in Table 1. PCR product (3 µL) was tested on 1% 
agarose gel (50 V, 40 min) alongside the DNA size marker. Cleaning of the PCR products was performed with 
QIAquick-PCR Purification kit (QIAGEN). The cleaned barcode amplification products were measured with 
NP-80 spectrophotometer (A2S) and Qubit 3 fluorometer (Invitrogen by Thermo Fisher Scientific) to assure suf-
ficient quantity and quality for nanopore sequencing according to oxford nanopore requirements.

MinION library preparation and multiplexed nanopore sequencing.  The sequencing libraries 
were prepared using the 1D Native barcoding genomic DNA protocol with EXP-NBD104 and SQK-LSK109 kits 
(Oxford Nanopore Technologies). ~ 200 fmol of purified amplification products were subjected to DNA repair 
and end-prep using a NEBNext DNA repair mix and NEBNext Ultra II End Repair/dA-Tailing Module (New 
England Biolabs). The library preparation included two ligation steps. In the first step, multiplexing barcodes 
were ligated to 500 ng of each of the processed amplification products, using T4 Ligase (New England Biolabs). 
Equal molarities of the barcoded amplicons were pooled together and 700 ng of the pooled sample was subjected 
to MinION adaptor ligation according to the protocol. Each step was followed by DNA purification with SPRI 
magnetic beads (Canvax, Spain). For optimal utilization of the MinION flow cell capacity, we multiplexed and 
sequenced the barcode samples in two separated batches: the first included the 16S rRNA, the 18S rRNA and 
the COI libraries for each of the four samples (12 multiplexed libraries in total), and the second included the 

Table 1.   Barcode amplification details. PCR program: 2 min at 94 °C, 32 cycles of: 30 s at 94 °C, 30 s at 45 °C 
to 57 °C, 30–60 s at 72 °C, and final extension 72 °C for 5 min.

Gene/genetic locus Primers Primer sequences (5′ to 3′) Annealing temp. (ºC) Amplicon Length (bp)

16S-small subunit ribosomal RNA 27-F 1492-R AGA​GTT​TGATCMTGG​CTC​AG
GGT​TAC​CTT​GTT​ACG​ACT​T 56 1500

18S-small subunit ribosomal RNA 566-F 1289-R CAG​CAG​CCG​CGG​TAA​TTC​C
ACT​AAG​AAC​GGC​CAT​GCA​CC 57 723

cytochrome c oxidase subunit I 
(COI) LCO1490-F HCO2198-R

GGT​CAA​CAA​ATC​ATA​AAG​ATA​
TTG​G
TAA​ACT​TCA​GGG​TGA​CCA​
AAA​AAT​CA

46 710

tufA-elongation factor tu (gene) tufGF4-F tufA-R
GGNGCNGCNCAA​ATG​GAYGG​
CCTTCNCGAATMGCR​AAW​
CGC​

45 807

ITS-internal transcribed spacer 
region in the rRNA ITS86-F ITS4-R GTG​AAT​CAT​CGA​ATC​TTT​GAA​

TCC​TCC​GCT​TAT​TGA​TAT​GC 55 369
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ITS and the tufA libraries for each of the four samples (8 multiplexed libraries in total). The sequencing runs 
were performed on the same MinION cell with a washing step between them according to Oxford Nanopore 
Technologies (ONT) instructions. The libraries were loaded to the Nanopore MinION Spot-on flow cell (FLO-
MIN106D, version R9) and sequenced until reaching ~ 2 Gb (~ 1.8 M reads) for the first batch (figure S1a) and 
~ 0.7 Gb (~ 1.1 M reads) for the second batch (figure S1b). Base-calling was done automatically by the MinKnow 
program. Raw reads were obtained in FAST5 and FASTQ formats from which “pass” quality reads were sub-
jected to further analysis.

Data analysis and statistics.  Following base-calling, reads were demultiplexed and adaptors were 
trimmed with qcat (https​://githu​b.com/nanop​orete​ch/qcat). Primers were removed using Cutadapt using default 
parameters with 10% error tolerance27. Read quality was estimated and visualized using NanoPlot28. Sequences 
were filtered based on read quality (-min_qual_mean 10) and read length was restricted (-min_len X -max_len 
Y as follows: 16S, 1200–1400 bp; 18S, 650–720 bp; COI, 630–700 bp; ITS, 270–340; tufA, 700–1000), using prin-
seq-lite V0.20.429. Because generating consensus sequences is essential for increasing the accuracy in Nanopore 
MinION studies30,31, we generated consensus sequences for each of the amplicon read datasets using ONTrack 
pipeline (https​://githu​b.com/Maest​Si/ONTra​ck) according to Maestri et al.32. The consensus sequences were also 
used as reference sequences for the calculation of the mapping and error rates using ONTrack Calculate_map-
ping_rate.sh and Calculate_error_rate.sh scripts32. For diversity analyses, trimmed sequences were imported 
into Qiime233 using the SingleEndFstqManifestPhred33 input format. The reads were dereplicated and clustered 
into operational taxonomic units (OTUs) at 80% identity (as implemented in34). We note that clustering had 
little effect on the mapping of species, and was implemented to reduce complexity and computation time when 
performing BLAST searches against large databases such as Silva13233. Representative sequences were classified 
using BLAST with Qiime2 (classify-consensus-blast), using -p-perc-identity 0.8 and -p-maxaccepts 1 against the 
following databases: for the 16S rRNA gene, we used either the RefSeq35 or Silva132 database (the latter was also 
used for classification of the 18S rRNA gene sequences). ITS sequences were classified against the UNITE data-
base V8 with the dynamic clustering thresholds35. Previously curated databases were used to classify tufA36 and 
COI37 sequences, following manual formatting to fit Qiime2 import. To estimate the taxa diversity among the 
samples, a PCoA chart was produced with the Bray–Curtis distance matrix based on the operational taxonomic 
units (OTUs) identities. PCoA plots and heatmaps were produced using Phyloseq38 and Ampvis239 packages in 
R version 3.6.340, based on feature and OTU tables that were exported from Qiime2. Venn diagrams were created 
with InteractiVenn free platform (https​://www.inter​activ​enn.net), based on OTUs that corresponded to at least 
two reads, to filter out possible contaminations and false matches.

Nanopore sequences deposit in GeneBank.  All Nanopore MinION filtered reads analyzed in this pro-
ject were deposited in the NCBI SRA database (https​://www.ncbi.nlm.nih.gov/sra). The data of the barcodes test 
run were deposited under Bioproject PRJNA627087 (samples accession numbers: SRR11581740–SRR11581744). 
The data of the plastic and water samples was deposited under Bioproject PRJNA625720 (samples accession 
numbers: SRR11554946–SRR11554965).

Results
Testing the Nanopore MinION barcoding accuracy and efficiency for the chosen loci.  To test 
the accuracy and the efficiency of the primers and the barcoding pipeline that was followed, we amplified the 
relevant barcode regions from the genomic DNA of five representative species and sequenced them with Min-
ION using ligation protocol with multiplexing as detailed in the methods section. The selected species were: 
Escherichia coli (16S rRNA gene), Homo sapiens (COI), Gracilaria cearensis (18S rRNA gene), Ulva fasciata 
(tufA) and Saccharomyces cerevisiae (ITS), representing bacteria, metazoans, green and red algae and fungi, 
respectively (Table 2). The mapping rates of the reads to the consensus sequences generated for the five species 
varied between 85% (Ulva tissue) to 100% (E. coli cell culture) and was correlated with sample purity level and 
the presence of foreign DNA contaminants (i.e. unsterile organisms vs. pure cell cultures). The average error 
rates of individual reads compared to the barcode consensus sequences ranged between 7.9% and 12.18%. How-
ever, we succeeded to decrease the error rates to 6.6–10% by filtering the reads according to their base-caller 
assigned quality (-min_qual_mean 10) (Table 2) and subsequently used this threshold for our experiment. In 
spite of the high error rate in individual sequences, almost all of the errors may be corrected since they tend to 

Table 2.   MinION barcoding test run. a Sequences were filtered based on read quality (-min_qual_mean 10).

Genetic barcode Target species

Top consensus 
GeneBank hit 
accession

Number of reads 
assigned to 
barcode

Average error rate 
for raw reads (%)

Average error rate 
for filtered reads 
(%)a

Consensus match to target sequence (%)

X 400 coverage X 100 coverage X 10 coverage

16S Escherichia coli CP027701.1 11,107 12.18 10 100 99.9 98.4

ITS Saccharomyces 
cerevisiae CP022977.1 6001 10 9 100 99.7 98.1

COI Homo sapiens MG660736.1 6748 10.29 9.4 100 100 99.4

18S Gracilaria Ceara AF468890.1 22,470 9.86 8.3 100 99.9 99.1

tufA Ulva fasciata NC_042255.1 6951 7.9 6.6 100 99.9 98.8

https://github.com/nanoporetech/qcat
https://github.com/MaestSi/ONTrack
https://www.interactivenn.net
https://www.ncbi.nlm.nih.gov/sra
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be introduced at random positions and therefore filtered out in the process of consensus sequences generation. 
Consequently, consensus sequences that will be based on a higher number of reads (up to a limit), are expected 
to be more accurate. To simulate the effect of MinION read coverage on the accuracy and efficiency of the 
metabarcoding we re-obtained the different parameters using 400, 100 and 10 reads that were randomly picked 
from each of the mapped barcode read pools. Overall, the parameters were similar in all runs, with only a slight 
decrease in the percent identity of the consensus sequence to the database sequence toward 10 reads cover-
age which was still sufficient for the correct identification of the species. This suggests that using the MinION 
sequencing platform in the barcoding of species within an environmental sample, may be accurate given these 
minimal coverage requirements.

The polyethylene prokaryotic community.  Our MinION-based 16S rRNA metabarcoding pipeline 
identified 1823 species in the pooled marina water sample (MW), 2572 in the pooled open water sample (OW), 
1810 in the pooled marina PE sample (PM) and 1004 in the pooled open water PE sample (POW) with aver-
age mapping rate (percent of mapped reads from total reads) of 45% (Table S1). At the phylum level, Proteo-
bacteria were the most dominant in all samples followed by Bacteroidetes and Cyanobacteria. The PE samples 
contained higher ratios of Bacteroidetes (PM-25% and POW-22%) compared to the water samples (MW-13% 
and OW-8%) as well as higher ratios of Cyanobacteria (14% and 5% in the PE samples vs. 2% in both water 
samples) (Fig. S2). These results agree with previous studies that likewise showed higher ratios of Bacteroidetes 
and Cyanobacteria on plastic compared to the water column6,7,11. The analysis of the diversity among the samples 
(Beta-diversity) suggests that the free-living prokaryote taxa from the two pooled water samples cluster together 
and are separated from the plastic-attached taxa identified in the pooled PE samples (Fig. 2a). Accordingly, only 
0.6% of the OTUs in the open water samples and 6.6% of the OTUs in the marina samples were shared between 
the PE and the water column (Fig. 2b). These results align with other studies showing that the plastisphere is a 
separate environmental niche for bacteria6, 7.

In the search for plastic-specific bacteria we focused on OTUs that were identified in both PE samples, assum-
ing that the occurrence of these species on PE from two very different environments (marina and open water) 
implies their strong association to this niche. Based on the 16S rRNA metabarcoding, 121 bacterial OTUs of two 
reads and above, were identified in both PE samples (Fig. 2b). Within this list, 50 OTUs (0.3% of the total OTU 
count), corresponding to 34 bacteria species, were identified in both PE samples and not in the water column 
(Fig. 2c). Almost half of the plastic-specific species belong to genera that are known to be directly involved in 
plastic or petroleum degradation including Alcanivorax41, Acidovorax42 and Alteromonas43 (Fig. 2c). Additional 
bacteria of these genera were also enriched in one or both of the PE samples according to taxa diversity analy-
sis among samples (Fig. 2a) and species abundances table (Fig. S3). An extended screen for plastic-associated 
species (Table S2), revealed taxa that were identified in both PE samples but were also dominant in the marina 
water sample. At the top of the list in this category was Pseudoalteromonas sp. 12 (mapped reads of total reads: 
PM—0.55%, POW—0.07%, MW—1.95%). Although there is currently no evidence for the ability of this spe-
cies to degrade petroleum, other Pseudoalteromonas species are known as hydrocarbon degraders44,45. Another 
known hydrocarbon-degrading bacterium, Alcanivorax borkumensis46, was identified with a similar reads abun-
dance profile (PM—0.37%, POW—0.19%, MW—0.59%). Interestingly, this species was shown to degrade both 
petroleum47 and low density polyethylene (LDPE)48. These two species were completely or almost completely 
absent from the open water sample.

The polyethylene eukaryotic community.  The number of eukaryotic species identified for each of the 
four sample pools varied between 88 and 280 species for 18S rRNA barcode, 46–186 for ITS barcode, 65–156 for 
tufA barcode and 3–16 for COI barcode. The mapping rates were 4.5–23.3%, 0.5–23.7%, 9.7–43% and 0.03–3.5% 
accordingly (Table S1). A comparison between the datasets of the four barcodes did not find any taxonomic 
overlaps (Fig 4f), suggesting that the primers of each barcode target different eukaryote taxa. Overall, more 
species were identified in the water samples compared to the plastic samples, except fungi (ITS), for which 
more species were identified in the marina samples, both on PE and free-living (Table S1). The eukaryotic diver-
sity among the samples did not imply a clear taxonomic separation of the PE samples from the water samples 
and tended to cluster according to the environment they were taken from (marina vs. open water) rather than 
according to their type (PE-attached vs. free-living) (Fig. 3).

The diatoms were the most dominant eukaryotic microorganisms in the PE samples as identified by the 18S 
barcoding (Class: Bacillariophyceae) (Fig. 3a) and by the tufA barcoding (order: Mastogloiales) (Fig. 3b) as well as 
by electron microscopy (Fig. 5). The major PE-associated diatom genera identified were: Navicula, Achnanathes, 
Amphora, Nitzschia, Rhaphoneis, Cylindrotheca and Ochrophyta (18S barcode, Fig. S4) and Aneumastus (tufA 
barcode, Fig. S5). In contrast to the diatoms, other taxa, such as the Copepods, were restricted to the open water 
samples and were absent from the PE samples (Fig. 3a). The ITS dataset included fungi from different orders 
with several PE-enriched species of order Pleosporales (Fig. 3C, Fig S6). The COI barcoding resulted in only a 
few taxa perhaps due to the low mapping rates for this barcode (Table S1). Nevertheless, this analysis identified 
the Polychaetas as an enriched taxon in the marina PE sample (Fig. 3d).

To identify eukaryotic species with a high association to the plastic, we sorted OTUs that were found in the 
PE samples from both locations but not in water (as was done for bacteria, Fig. 4). The analysis revealed 27 PE-
specific species, corresponding to 41 OTUs (Fig. 4, in red), accounting for 0.22% of all eukaryote OTUs in the 
samples. The plastic-specific taxa included 10 diatom species, 4 green algae, 2 red algae, 2 brown algae, 4 SARs 
clade protists, 4 fungi as well as human (Fig. 4e). Within these, the dominant species, based on their relative 
read abundances, were diatoms of Navicula (Fig. S4) (Fig. 5) and Aneumastus (Fig. S5) genera and fungi of the 
order Sporidiobolaceae (Fig. S6).  
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Discussion
Plastic debris in the world oceans is now more abundant than any other type of marine debris, creating a new 
man-made ecosystem5. This ecosystem has been rapidly occupied by rich communities of microorganisms, of 
which research is still in its infancy. An emerging powerful tool to study the plastisphere biodiversity is DNA 
metabarcoding11. Given the limitations of the available databases, the success and efficiency of DNA metabar-
coding are affected by several factors, including the sequencing technology which is being used. In this sense, 
Nanopore MinION technology has several advantages over the commonly used second-generation sequencing 
technologies, as suggested both empirically10,41,49 and practically50,51. Advantages include the high median length 
of its reads, its portability, its low cost, its simplicity of operation and the fact that it is controllable and provides 
real-time sequencing data. Although sequencing error rates within single MinION reads are still higher com-
pared to those produced by other platforms, they appear at random positions along the sequence (in contrast to 
amplification-based NGS techniques), and therefore may be corrected given sufficient coverage52. In this study, 
we successfully tested and implemented a tailored pipeline for the metabarcoding of the plastisphere microbi-
ome with Nanopore MinION sequencing using longer regions of five different barcode loci that allowed a wide 
coverage of marine prokaryotic and eukaryotic taxa.

Since the purpose of the work was to identify marine microorganisms that preferentially inhabit plastic, we 
compared the microbiome of pooled PE samples from plastic food bags that were submerged for 1 month at sea 
to the microbiome of the surrounded water. The plastic bags were positioned at two proximal but environmentally 
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uncultured Fluviicola sp.
uncultured Hyphomonadaceae sp.
uncultured Lewinella sp.
uncultured Litorimonas sp.
uncultured Loktanella sp.
uncultured Nisaea sp.
uncultured Olleya sp.
uncultured Polaribacter 4 sp.
uncultured Pseudofulvibacter sp.
uncultured Rhodobacteraceae sp.
uncultured Saprospiraceae sp.
uncultured Winogradskyella sp.

Figure 2.   Bacterial genera diversity and PE-specific species. (a) Beta-diversity of the bacterial genera and their 
distribution among the pooled samples (b) Shared and unique OTUs among the samples. In yellow—OTUs that 
were identified in both PE samples, but also in water samples. OTU counts refer to OTUs that corresponded 
to ≥ 2 reads. In red—OTUs that were unique to the PE samples. (c) The list of PE-specific bacterial taxa. Known 
petroleum and plastic-degrading genera are marked [according to their color in (a)]. OW open water samples, 
POW open water plastic samples, MW marina water samples, PM marina plastic samples.
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different locations: the marina location, which is protected from high-energy disturbances such as waves and 
currents, yet exposed to petroleum and other pollutants, and the open water location which is a high energy 
environment with high a water turnover and lower presence of pollutants. We assumed that only microorgan-
isms with high preference for life on plastic will be found in both of them. Indeed, we identified only 34 bacteria 
species and 27 eukaryotic species in this category. Among these plastic-specific microorganisms we identified 
at least 16 bacteria species that are known to be associated with hydrocarbon degradation, mainly of genera 
Alcanivorax, Acidovorax and Alteromonas41–43 and a fungi species, of the order Sporidiobolaceae which was 
previously found to be associated with marine tar53. Interestingly, petroleum-associated bacteria taxa, including 
Pseudoalteromonas44 and Alcanivorax54, were abundant in the marina water in addition to their presence in the 
PE samples. This result fits well with the high abundance of petroleum pollutants in the marina water. Moreo-
ver, A. borkumensis has recently shown to be able to degrade PE48. The presence of this species on plastic and 
in a petroleum-rich environment at the same time, as suggested by our results, correlates well with its recorded 
carbohydrate metabolism activity.

While the metabarcoding of eukaryotes is far more challenging than that of the prokaryotes, our results 
suggest that a combination of several barcodes and different taxonomic databases has the potential to provide 
a more comprehensive picture of the plastisphere eukaryotic microbiome. In this sense, the tufA barcoding 
complemented the 18S barcoding in identifying the green algae repertoire as well as a few protists that were not 
probed with the 18S barcode. The ITS barcoding was necessary to cover the fungi Kingdome and the COI bar-
code, although resulted in low mapping rates, was proven to be of added value in the identification of metazoans.

To complement the eukaryote metabarcoding data we used scanning electron microscopy (SEM) to visual-
ize fixed PE samples from the bags that were used in our experiment. SEM imaging was shown to be useful to 
understand the composition of the microbiota and the structure of the plastisphere55–57. Whereas bacteria spe-
cies are very hard to be classified based on morphology, certain Protista have certain identifiable morphological 
characteristics enabling taxonomical classification, at least to a certain resolution. This includes the diatoms 
(Class Bacillariophyceae) that were highly abundant on the plastic surface and can be classified based on the 
unique structure of their frustule. It is important to note that while in this study we used SEM strictly for the 

Figure 3.   Eukaryote taxa diversity. Beta-diversity of eukaryotic taxa and their distribution among the pooled 
samples. (a) 18S metabarcoding showing enrichment of diatoms (Bacillariophyceae) on PE—in light green. (b) 
tufA metabarcoding. (c) ITS metabarcoding (d) COI metabarcoding. OW open water samples, POW open water 
plastic samples, MW marina water samples, PM marina plastic samples.
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taxonomic identification, this imaging technique has the potential to be very informative for many other aspects 
of the plastisphere characterization, such as the interactions among plastisphere species, the development and 
the structure of the biofilm and the changes to the plastic surface itself.

Following our results, we believe that our approach and work pipeline were efficient in the characterization 
of the plastisphere and the identification of plastic-specific species. Future studies of the plastisphere will benefit 
from combining multiple molecular and microscopy techniques. Other than metabarcoding, high throughput 
molecular screening may include metagenomics, transcriptomics, proteomics and metabolomics to character-
ize the plastisphere composition. Additional visualization techniques, such as fluorescent in situ hybridization 
(FISH)58, may also be applied in plastisphere studies.

18S:
Navicula spp. (7)
Bacillariophyceae sp. (1)
Thalassionema spp. (1)
Rhabdonema sp. LM-2002 (1)
Nitzschia sp. (1)
Hyalosira delicatula (1)
Ulvella bullata (1) 
Erythrotrichia carnea (1)
Pylaiella sp. (1)
Petalonia fascia (1)
Ochrophyta spp. (4)
Bicosoeca vacillans (1)
Aplanochytrium (1)
Hartmannula sinica (1)
Homo sapiens (human) (1)

tufA:
Aneumastus ohridanus (4)
Aneumastus rostratus (2)
Aneumastus albanicus (1)
Mastogloia dansei (1)
Ulva sp. 3linza (1)
Ulvales sp. 3-BER-2007 (2)
Ulvella heteroclada (1)
Rhizophyllis sp. 1 TS-2016 (1)

ITS (fungi):
Sporidiobolaceae spp. (1)
Chaetomium sp. (1)
Malassezia globose (1)
Deniquelata barringtoniae (1)
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Figure 4.   Shared and unique eukaryotic OTUs among the samples. Venn diagrams are presented for each of 
the four eukaryotic barcodes: (a) 18S. (b) tufA. (c) ITS. (d) COI. In yellow—OTUs that were identified in both 
plastic samples, but also in water samples. In red—OTUs that were unique to both plastic samples. OW open 
water samples, POW open water plastic samples, MW marina water samples, PM pooled marina plastic samples, 
OTU counts refer to OTUs that corresponded to ≥ 2 reads. (e) List of plastic-specific eukaryote species and the 
number of their corresponding OTUs (in parentheses). In light green—diatoms, in dark green—green algae, in 
red—red algae, in brown—brown algae, in yellow—SARs clade protists (f) No shared OTUs were found among 
the four eukaryote barcodes.
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